Accelerating Atmospheric Simulation on GPU, FPGA, and MIC

Haohuan Fu

haohuan@tsinghua.edu.cn

Center for Earth System Science Tsinghua University, Beijing

Sep/19/2013 @ NCAR

The Center for Earth System Science, Tsinghua University

Started in 2009

CMIP5: LASG-CESS

- Study of the earth as an integrated system
 - to investigate interactions between atmosphere, land, water, ice, biosphere, societies, technologies, and economics
 - observing, understanding, and predicting global changes
 - to guide political / economical / technical decisions at different scales for assuring sustainable development

The Present Faculty

Tsinghua HPGC Group

- HPGC: high performance geo-computing <u>http://www.thuhpgc.org</u>
- High performance computational solutions for geoscience applications
 - simulation-oriented research: providing highly efficient and highly scalable simulation applications (climate modeling, exploration geophysics)
 - data-oriented research: data processing, data compression, and data mining
- Combine optimizations from three different perspectives (Application, Algorithm, and Architecture), especially focused on new accelerator architectures

Application

- Climate Modeling
 - global-scale atmospheric simulation (800 Tflops Shallow Water Equation)
 - GPU-based acceleration for GEOS-Chem
 - FPGA-based acceleration for weather forecasting acceleration
- Exploration Geophysics
 - forward modeling / inversion / migration
- Remote Sensing Data Processing
 - data analysis, visualization, correlation of different data sets

Algorithm

- parallel Stencil on Different HPC Architectures
- parallel Sparse Matrix Solver
- parallel Data Compression (PLZMA)
- hardware-Based Gaussian Mixture Model Clustering Engine: 517x speedup

Architecture

- multi-core/many-core (CPU, GPU, MIC)
- reconfigurable hardware (FPGA)

Application

- Climate Modeling
 - global-scale atmospheric simulation (800 Tflops Shallow Water Equation)
 - GPU-based acceleration for GEOS-Chem
 - FPGA-based acceleration for weather forecasting acceleration
- Exploration Geophysics
 - forward modeling / inversion / migration
- Remote Sensing Data Processing
 - data analysis, visualization, correlation of different data sets

Algorithm

- parallel Stencil on Different HPC Architectures
- parallel Sparse Matrix Solver
- parallel Data Compression (PLZMA)
- hardware-Based Gaussian Mixture Model Clustering Engine: 517x speedup

Architecture

- multi-core/many-core (CPU, GPU, MIC)
- reconfigurable hardware (FPGA)

Outline

Tianhe-1A: GPU

Maxeler DFE: FPGA

Tianhe-2: MIC

Future Plan & Discussion

Multidisciplinary Collaborations

- Prof. Chao Yang
 - Institute of Software, CAS
 - computational mathematics
- Dr. Wei Xue
 - Department of Computer Science, Tsinghua University
 - □ HPC (MPI, OpenMP, MIC)
- Dr. Haohuan Fu
 - Center for Earth System Science, Tsinghua University
 - HPC (accelerators, GPU, FPGA, MIC)
- Prof. Lanning Wang
 - College of Global Change and Earth System Science, Beijing Normal University (BNU-ESM)
 - climate scientist

Outline

Tianhe-1A: GPU

Maxeler DFE: FPGA

Tianhe-2: MIC

Future Plan & Discussion

Highly-Scalable Framework for Global Atmospheric Simulation on Tianhe-1A

- Starting from shallow wave equation
 - cubed-sphere mesh grid
 - adjustable partition between CPU and GPU
 - scale to 40,000 CPU cores and 3750 GPUs with a sustainable performance of 800 TFlops

Mesh and Stencil

■ 13-point stencil

- Interp. Across patches
 - 1-d linear interpolation

- Spatially discretized with a cellcentred finite volume method
- Integrated with a second-order accurate TVD Runge-Kutta method

Improved hybrid CPU-GPU Algorithm

Note: halo1/2/3/4 — the 4 steps of the "pipe-flow" communication scheme adjustable partition between CPU and GPU

"Pipe-Flow" Scheme for Message-Passing on Cubed-Sphere

Four steps to arrange conflict-free messagepassing on cubed-

The arrows indicate directions of data entering or exiting patches as a pipe flow.

For more details, please refer to our PPoPP 2013 paper: "A Peta-Scalable CPU-GPU Algorithm for Global Atmospheric Simulations", in Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), pp. 1-12, Shenzhen, 2013. .

Outline

Tianhe-1A: GPU

Maxeler DFE: FPGA

Tianhe-2: MIC

Future Plan & Discussion

Highly-Scalable Atmospheric Simulation on Data-Flow Engines

- Maxeler Data-Flow Engine (DFE)
 - Field-Programmable Gate Arrays (FPGA)
 - 24 GB onboard memory
 - PCIE connection to host
 - MaxRing connection between cards

Hybrid CPU+FPGA Design

For each stencil cycle FPGA side:

1 Inner-part stencil

CPU side:

- 1 Update halos
- 2 Interpolate if necessary
- 3 Outer-part stencils

BARRIER:

CPU-FPGA exchange

Work Flow

Go for a Mixed-Precision Design

Floating point operations of SWE stencil

Operations	num
ADD/SUB	434
MUL	570
DIV	99
Others	45

Resource Cost of SWEs on Virtex-6 SX457T

Resource	baseline
LUTs	299 %
FFs	220 %
BRAMs	20 %
DSPs	189 %

Baseline: a straightforward double-precision SWEs

Precision-based optimization to further decrease the resource usage

Analysis of the Dynamic Range

Precision Exploration

General Architecture of the Mixed-Precision Design

Resource Cost of SWEs on Virtex-6 SX457T

Resource	baseline	mixed- precision
LUTs	299 %	76.17%
FFs	220 %	53.41%
BRAMs	20 %	12.59 %
DSPs	189 %	44.84 %

- Baseline: a straightforward double-precision SWEs
- Mixed-precision: fixed-point and reduced-precision floating-point

Hardware Platform: Maxeler DFEs

- Environment
 - Maxcompiler development tool

- MaxWorkstation
 - One Intel i7 quad-core CPU
 - One Accelerator card (Virtex-6 SX 475T & 24 GB DRAM)
- MaxNode
 - 12 Intel Xeon CPU cores
 - four Accelerator cards (Virtex-6 SX 475T & 24 GB DRAM)

Performance Results

Platform	<u>Performance</u>	Speedup
	(points/second)	
6-core CPU	4.66K	1
Tianhe-1A node	110.38K	23x
MaxWorkstation	468.1K	100x
MaxNode	1.54M	330x

Meshsize: $1024 \times 1024 \times 6$

MaxNode speedup over Tianhe node: 14 times

Power Efficiency

Platform	<u>Efficiency</u> (points/(second × watt))	Speedup
6-core CPU	20.71	1
Tianhe-1A node	306.6	14.8x
MaxWorkstation	2.52K	121.6x
MaxNode	3K	144.9x

Meshsize: $1024 \times 1024 \times 6$

MaxNode is 9 times more power efficient

For more details, please refer to our FPL 2013 paper: "Accelerating Solvers for Global Atmospheric Equations Through Mixed-Precision Data Flow Engine", in *Proceedings of the 23rd International Conference on Field Programmable Logic and Applications*, 2013.

Outline

Tianhe-1A: GPU

Maxeler DFE: FPGA

Tianhe-2: MIC

Future Plan & Discussion

Tianhe-2: Brief Introduction

- Tianhe-2
 - □ 16,000 nodes
 - each node contains two 12-core Intel Ivy Bridge
 CPUs, and 3 Intel Xeon Phi Acceleration Cards
 - peak: 54.9 PFlops
 - □ LINPACK: 33.8 PFlops

Running SWE on Tianhe-2

Hierarchical 2D domain decomposition

- Balanced CPU/MIC utilization
 - □ 0-3 MICs
 - adjustable blocks

Running SWE on Tianhe-2: Workflow

Optimization Scheme

base version

- serial
- no-VEC

multi-thread

OpenMP

multi-thread

- + VEC
- compiler
- Cilk

Cache blocking

- different level
- auto-search

Scaling the Performance

SWE Performance on Tianhe-2

MIC against 24 CPU cores

SWE Performance on Tianhe-2

Weak Scaling

Using up to 8,652 nodes (207,648 CPU cores + 1,583,316 MIC cores)

Outline

Tianhe-1A: GPU

Maxeler DFE: FPGA

Tianhe-2: MIC

Future Plan & Discussion

Highly-Scalable Framework for Global Atmospheric Simulation

 evolve from "2D Shallow Water Wave Equations" to "3D Euler Equations"

Highly-Scalable Framework for Global Atmospheric Simulation

- Model development:
 - from 2D SWE to 3D Euler
 - coupling the 3D Euler dynamics with physics processes to test for local and global scenarios

HPC:

- an FPGA-based cluster for climate modeling?
- larger-scale runs on 100P supercomputer (dynamic + physics)

Thank You!

haohuan@tsinghua.edu.cn

